Research in life-science disciplines has created an undisputable body of evidence of health hazards and biological cell damage from UV exposure. This is true for skin and also for ocular tissues. Wavelength of EM radiation is connected to its photon energy by physical laws. The shorter the wavelength the higher the inherent energy. The photon energy is the culprit of possible damage to cells and molecules. Since the blue light is next to the UV spectrum, and the blue light holds the highest photon energy of all visible light spectrum, a legitimate question addresses the potential of cells being damaged from blue light exposure. In contrast to UV-related research – for blue light there is still substantial research ongoing, and conclusive evidence to be delivered.
While scientific studies show that blue light can trigger metabolic processes that can, through photo-oxidative stress to cells, lead to long-term degradation of cell integrity and eventually support premature cell death. However – the observed damage cues for the ocular, namely the retinal structures are multiparametric hazards. And because the consequences are of long-term time scale / decades than years – a proper discrimination of the causality is hard to show.
The most popular assumed blue light hazard of excessive blue light exposure of the eye, and hence the retina, is a supportive effect on patients developing AMD, the age-related macular degeneration.